2019/2020 Master I : Matière condensée Physique du solide I

Résumé 1

Maille: Partie élémentaire du cristal, à partir de laquelle on peut reconstituer tout le cristal. On distingue deux types de mailles, simple et multiple

Réseau cristallin : Assemblage infini des mailles.

Nœuds: Points régulièrement disposés constituant la structure du cristal

Motif du cristal : Entité placée à chaque nœud et qui se répète dans le cristal (= atome / ion / molécule / ...)

Structure cristalline = Réseau + Motif

Vecteur de Translation : s'écrit : $\vec{T} = u \cdot \vec{a} + v \cdot \vec{b} + w \cdot \vec{c}$. Tel que : u, v et w trois entiers.

Indices d'une direction ou rangée cristalline se note [uvw]. On appelle rangée [u v w] toute droite passant par l'origine et le nœud de coordonnées (u, v, w). Les indices u, v, w sont premiers entre eux.

Les paramètres cristallographiques : sont les paramètres linéaires (trois vecteurs \vec{a} , \vec{b} et \vec{c}) et les paramètres angulaires (trois angles α , β et γ),

Multiplicité (**Population**): Nombre de nœuds appartenant à la maille (Nombre de sphères appartenant à la maille élémentaire)

Compacité (Modèle des sphères dures indéformables) : C=Rapport du volume réellement occupé par les sphères sur le volume total de la maille = $\frac{V_{occupé \, par \, sphère}}{V_{total \, de \, la \, amille}}$, $V_{maille} = \vec{a} \cdot (\vec{b} \wedge \vec{c})$

Taux de compacité : Il est défini par $\tau = 100C$

Masse Volumique: Rapport masse d'une maille / volume $\rho = \frac{nM_{noeud}}{NV_{maille}}$

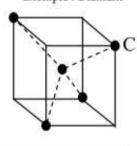
n =nombre de noeud par maille

Mmotif = masse molaire du noeud

N = nombre d'Avogadro=

 V_{maille} = volume de la maille

Allotropie: Lorsqu'un corps pur peut exister sous plusieurs variétés cristallines


Les systèmes cristallins : Selon la symétrie de la maille cristalline II existe sept systèmes cristallins de base qui donnent naissance à 14 réseaux de Bravais.

Coordonnées réduites : Tous les atomes de la maille sont représentées par les coordonnées réduites (x, y, z).

CRISTAUX COVALENTS

- → Empilement d'atome (sphères)
 - → Motif = Atome
- → Liaison de covalence Ex : C, Si

Exemple: Diamant

CRISTAUX IONIQUES

- → Empilement d'ions (charges + et -)
 - → Motif : Les ions
- → Attraction charges Ex: NaCl, ZnS, CaF₂

Exemple : Chlorure de Césium CsCl

CRISTAUX METALLIQUES

- → Empilement d'atome (sphères)
 - → Motif = Atome métallique
 - → Liaison métallique Ex : Na, Fe

(Pas de liaison directe, seulement une mise en commun des e')

CRISTAUX MOLECULAIRE

- → Empilement de molécules
- → Motif : la molécule
- → Interaction électrique Ex : I₂, H₂O, ...

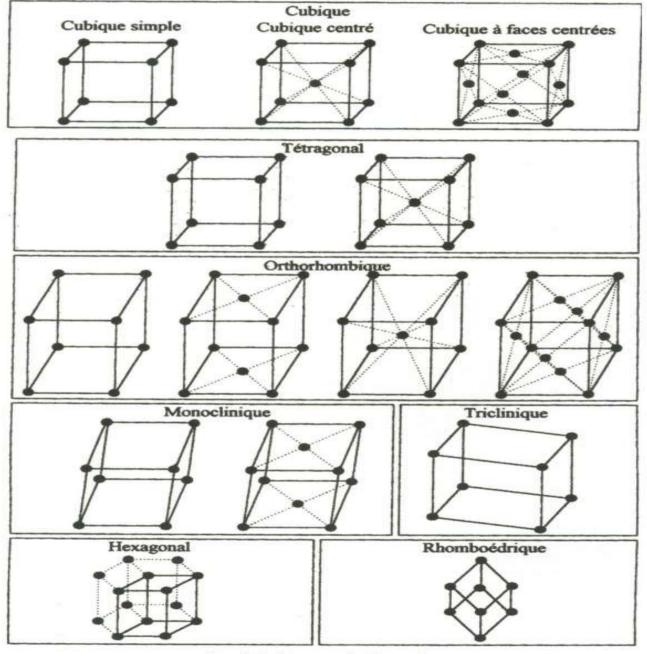
Exemple : Diiode I2

I2

I2

I2

I2


cubique P cP	cubique I cI	cubique F cF
0,0,0	$0,0,0$ $\frac{1}{2},\frac{1}{2},\frac{1}{2}$	$0,0,0$ $\frac{1}{2},\frac{1}{2},0$ $\frac{1}{2},0,\frac{1}{2}$ $0,\frac{1}{2},\frac{1}{2}$
• premiers voisins : 6 à la distance a • seconds voisins :	 premiers voisins: 8 à la distance a√3/2 seconds voisins: 	• premiers voisins : 12 à la distance $a\sqrt{2}/2$ • seconds voisins :
12 à la distance $\sqrt{2}a$ • densité des rangées : - [100] : 1/a - [110] : 1/($\sqrt{2}a$) - [111] : 1/($\sqrt{3}a$)	6 à la distance a • densité des rangées : - [100] : $1/a$ - [110] : $1/(\sqrt{2}a)$ - [111] : $2/(\sqrt{3}a)$	6 à la distance a • densité des rangées : - [100] : $1/a$ - [110] : $2/(\sqrt{2}a)$ - [111] : $1/(\sqrt{3}a)$
• densité des plans : • (100) : $1/a^2$ • (110) : $1/(\sqrt{2}a^2)$ • (111) : $1/(\sqrt{3}a^2)$	• densité des plans : - (100) : $1/a^2$ - (110) : $2/(\sqrt{2}a^2)$ - (111) : $1/(\sqrt{3}a^2)$	• densité des plans : $-(100): 2/a^2$ $-(110): 2/(\sqrt{2}a^2)$ $-(111): 4/(\sqrt{3}a^2)$
• compacité : - $r_{at} = a/2$ - $c = \pi/6 \approx 0.526$	• compacité : $ r_{at} = a\sqrt{3}/4 $ $ c = \pi\sqrt{3}/8 \approx 0.680 $	• compacité : $ r_{at} = a\sqrt{2/4} $ • $c = \pi/(3\sqrt{2}) \approx 0.740 $
(001)	(110)	(001)

· Conclusions?

Le réseau cF est le plus dense.

Les 7 systèmes cristallins

Système	Longueurs des vecteurs directeurs des axes	Angles entre les axes
Cubique	a=b=c	α=β= γ=90°
Quadratique ou tétragonal	a=b≠c	α=β= γ=90°
Orthorhombique	a≠b≠c	α=β= γ=90°
Monoclinique	a≠b≠c	α= γ=90° β≠90°
Triclinique	a≠b≠c	α≠β≠γ≠90°
		<u> </u>

Les 14 réseaux de Bravais